
W

-types and Bisimulation

Henning Basold and Daniël Otten



Introduction

Motivation:

▶ Induction is well-studied but not all results translate to coinduction.

▶ Induction principle uses dependent functions which we can’t dualise.

▶ Adding η-reduction for streams makes type checking undecidable:

s ≡ head s :: tail s.

We study known definitions of the coinduction principle on

W

-types: how

do we formulate them and under which assumptions are they equivalent?



Conventions

The polynomial functor for A : Type and B : A → Type is given by:

P X :=
∑

a:A(B a → X),

P f := λ(a, c). (a, f ◦ c).

The P -coalgebras are given by:

Coalg :=
∑

X:Type(X → P X),

CoalgMor (X, d) (Y, e) :=
∑

f :X→Y (e ◦ f = P f ◦ d).

X

P X

d

X Y

P X P Y

d

f

e

P f



W

-type

Intuitively, the

W

-type for A : Type and B : A → Type is

▶ the type of potentially infinite trees

▶ whose nodes each have a label a : A and

▶ precisely one child for every b : B a.

This gives rise to a coalgebra des :

W

→ P

W

.

a

t0 t1 t2

b0 b1 b2 · · ·



Coinduction

For any coalgebra d : X → P X and x : X we get a tree:

xa

xa0 xa1

xa00 xa10 xa11 xa12

...
...

...
...

This gives a unique morphism (f, c) : CoalgMor (X, d) (

W

,des).



Final

W

-type

For (

W

,des) : Coalg we define:

IsFinM (

W

,des) :=
∏

(X,d):Coalg IsContr (CoalgMor (X, d) (

W

,des)).

(X, d) (

W

,des)
!(f,c)



Coherent

W

-type

For (

W

,des) : Coalg we define:

IsCohM (

W

,des) :=
∏

(X,d):Coalg

CoalgMor (X, d) (

W

,des)×∏
(f0,c0),(f1, c1):CoalgMor(X,d) (

W

,des)∑
p:(f0≡f1)

∏
x:X (the diagram commutes)

des (f0 x) P f0 (dx)

des (f1 x) P f1 (dx)

cong (λf.des(f x))p

cong-appc0 x

= cong (λf.P f (dx))p

cong-appc1 x



Span Bisimulation

For (X, d) : Coalg we define:

SpanBisim (X, d) :=
∑

(R,b):Coalg(CoalgMor (R, b) (X, d))2

(X, d) (R, b) (X, d)
(ρ0,c0) (ρ1,c1)

We can view ((R, b), (ρ0, c0), (ρ1, c1)) : SpanBisimX as a relation on X:

x0 ∼ x1 :=
∑

r:R((ρ0 r = x0)× (ρ1 r = x1)).

Propositional equality is a bisimulation:

=(X,d) := ((X, d), (id, refl), (id, refl)).



Span Bisimulation Morphism

For (X, d) : Coalg and ∼,≈ : SpanBisim (X, d) we define:

SpanBisimMor ∼ ≈ :=
∑

(f,c):CoalgMor(R,b) (S,c)

(the diagram commutes).

(R, b)

(X, d) (X, d)

(S, c)

(ρ0,c0) (ρ1,c1)

(f,c)

(σ0,d0) (σ1,d1)

In particular this is an inclusion of the relations.



Span Bisimilarity

W

-type

For (

W

,des) : Coalg we define:

IsSpanBisimM (

W

,des) := (
∏

(X,d):Coalg CoalgMor (X, d) (

W

,des))×∏
(∼:SpanBisim(

W

,des))

IsContr (SpanBisimMor ∼ =(X,d))

(R, b)

(

W

,des) (

W

,des)

(

W

,des)

(ρ0,c0) (ρ1,c1)

!(f,c)

(id,refl) (id,refl)



Implications

We have the following functions:

IsFinM(

W

,des) IsSpanBisimM(

W

,des)

IsCohM(

W

,des) IsLiftingBisimM(

W

,des)

funext

▶ The arrow marked with ‘funext’ uses function extensionality.

▶ IsLiftingBisimM would have to add coherences to be equivalent.

▶ These results have largely been formalised in Agda.


