M-types and Bisimulation

Henning Basold and Daniël Otten

Introduction

Motivation:

- ▶ Induction is well-studied but not all results translate to coinduction.
- ▶ Induction principle uses dependent functions which we can't dualise.
- Adding η -reduction for streams makes type checking undecidable:

 $s \equiv \text{head } s :: \text{tail } s.$

We study known definitions of the coinduction principle on M-types: how do we formulate them and under which assumptions are they equivalent?

Conventions

The polynomial functor for A: Type and $B: A \to Type$ is given by:

$$\begin{split} P \; X &\coloneqq \sum_{a:A} (B \: a \to X), \\ P \; f \; \coloneqq \lambda(a,c). \; (a,f \circ c). \end{split}$$

The *P*-coalgebras are given by:

$$\begin{aligned} \text{Coalg} &\coloneqq \sum_{X:\text{Type}} (X \to P X), \\ \text{CoalgMor} \ (X, d) \ (Y, e) &\coloneqq \sum_{f:X \to Y} (e \circ f = P f \circ d). \end{aligned}$$

M-type

Intuitively, the M-type for $A: \mathrm{Type}$ and $B: A \to \mathrm{Type}$ is

- ► the type of potentially infinite trees
- whose nodes each have a label a: A and
- precisely one child for every b : B a.

This gives rise to a coalgebra des : $M \to P M$.

Coinduction

For any coalgebra $d: X \to PX$ and x: X we get a tree:

This gives a unique morphism (f, c): CoalgMor(X, d) (M, des).

Final M-type

For (M, des) : Coalg we define:

 $\text{IsFinM} (\mathsf{M}, \text{des}) \coloneqq \prod_{(X,d):\text{Coalg}} \text{IsContr} (\text{CoalgMor} (X, d) (\mathsf{M}, \text{des})).$

 $(X,d) \xrightarrow{!(f,c)} (\mathsf{M}, \mathrm{des})$

Coherent M-type

For $(\mathsf{M},\mathrm{des}):\mathrm{Coalg}$ we define:

IsCohM (M, des) :=
$$\prod_{(X,d):Coalg}$$

CoalgMor (X, d) (M, des) ×
 $\prod_{(f_0,c_0),(f_1,c_1):CoalgMor(X,d) (M, des)}$
 $\sum_{p:(f_0 \equiv f_1)} \prod_{x:X}$ (the diagram commutes)

Span Bisimulation

For (X, d): Coalg we define:

SpanBisim $(X, d) \coloneqq \sum_{(R,b):Coalg} (CoalgMor (R, b) (X, d))^2$

$$(X,d) \xleftarrow{(\rho_0,c_0)} (R,b) \xrightarrow{(\rho_1,c_1)} (X,d)$$

We can view $((R, b), (\rho_0, c_0), (\rho_1, c_1))$: SpanBisim X as a relation on X:

$$x_0 \sim x_1 \coloneqq \sum_{r:R} ((\rho_0 r = x_0) \times (\rho_1 r = x_1)).$$

Propositional equality is a bisimulation:

$$=_{(X,d)} := ((X,d), (\mathrm{id}, \mathrm{refl}), (\mathrm{id}, \mathrm{refl})).$$

Span Bisimulation Morphism

For (X, d): Coalg and \sim, \approx : SpanBisim (X, d) we define:

 $\begin{array}{l} {\rm SpanBisimMor} \sim \approx \coloneqq \sum_{(f,c): {\rm CoalgMor}\,(R,b)\,(S,c)} ({\rm the \ diagram \ commutes}). \end{array}$

In particular this is an inclusion of the relations.

Span Bisimilarity M-type

For (M, des) : Coalg we define:

$$\begin{split} \text{IsSpanBisimM} \ (\mathsf{M}, \text{des}) &\coloneqq \left(\prod_{(X,d):\text{Coalg}} \text{CoalgMor} \left(X, d\right) \left(\mathsf{M}, \text{des}\right)\right) \times \\ &\prod_{(\sim:\text{SpanBisim} \ (\mathsf{M}, \text{des}))} \\ &\text{IsContr} \left(\text{SpanBisimMor} \ \sim =_{(X,d)}\right) \end{split}$$

Implications

We have the following functions:

 $\begin{array}{c} \mathrm{IsFinM}\left(\mathsf{M},\mathrm{des}\right) & \overleftarrow{} & \mathrm{IsSpanBisimM}\left(\mathsf{M},\mathrm{des}\right) \\ & & & \\ \mathrm{funext} & & \\ \mathrm{IsCohM}\left(\mathsf{M},\mathrm{des}\right) & \longrightarrow & \mathrm{IsLiftingBisimM}\left(\mathsf{M},\mathrm{des}\right) \end{array}$

- ▶ The arrow marked with 'funext' uses function extensionality.
- ▶ IsLiftingBisimM would have to add coherences to be equivalent.
- ► These results have largely been formalised in Agda.