M-types and Bisimulation

Henning Basold and Daniël Otten

Introduction

Motivation:

- Induction is well-studied but not all results translate to coinduction.
- Induction principle uses dependent functions which we can't dualise.
- Adding η-reduction for streams makes type checking undecidable:

$$
s \equiv \text { head } s:: \text { tail } s
$$

We study known definitions of the coinduction principle on M-types: how do we formulate them and under which assumptions are they equivalent?

Conventions

The polynomial functor for A : Type and $B: A \rightarrow$ Type is given by:

$$
\begin{aligned}
& P X:=\sum_{a: A}(B a \rightarrow X), \\
& P f:=\lambda(a, c) .(a, f \circ c) .
\end{aligned}
$$

The P-coalgebras are given by:

$$
\begin{aligned}
& \text { Coalg }:=\sum_{X: \text { Type }}(X \rightarrow P X), \\
& \text { CoalgMor }(X, d)(Y, e):=\sum_{f: X \rightarrow Y}(e \circ f=P f \circ d) .
\end{aligned}
$$

M-type

Intuitively, the M-type for A : Type and $B: A \rightarrow$ Type is

- the type of potentially infinite trees
- whose nodes each have a label $a: A$ and
- precisely one child for every $b: B a$.

This gives rise to a coalgebra des : $M \rightarrow P M$.

Coinduction

For any coalgebra $d: X \rightarrow P X$ and $x: X$ we get a tree:

This gives a unique morphism (f, c) : CoalgMor $(X, d)(M$, des $)$.

Final M-type

For (M, des) : Coalg we define:

$$
\operatorname{IsFinM}(M, \text { des }):=\prod_{(X, d): \text { Coalg }} \operatorname{IsContr}(\operatorname{CoalgMor}(X, d)(M, \text { des })) .
$$

$$
(X, d) \stackrel{!(f, c)}{-}(M, \operatorname{des})
$$

Coherent M-type

For (M, des) : Coalg we define:

$$
\operatorname{IsCohM}(M, \operatorname{des}):=\prod_{(X, d): \text { Coalg }}
$$

CoalgMor $(X, d)(M, \operatorname{des}) \times$
$\prod_{\left(f_{0}, c_{0}\right),\left(f_{1}, c_{1}\right): \text { CoalgMor }(X, d)(M, \text { des })}$
$\sum_{p:\left(f_{0} \equiv f_{1}\right)} \prod_{x: X}$ (the diagram commutes)

$$
\begin{array}{cc}
\operatorname{des}\left(f_{0} x\right) \xrightarrow{\text { cong-app } c_{0} x} & P f_{0}(d x) \\
\operatorname{cong}(\lambda f \cdot \operatorname{des}(f x)) p \downarrow & { }_{\downarrow}{ }^{\downarrow} \operatorname{cong}(\lambda f . P f(d x)) p \\
\operatorname{des}\left(f_{1} x\right) \xrightarrow[\text { cong-app } c_{1} x]{\longrightarrow} & P f_{1}(d x)
\end{array}
$$

Span Bisimulation

For (X, d) : Coalg we define:

$$
\begin{gathered}
\operatorname{SpanBisim}(X, d):=\sum_{(R, b): \text { Coalg }}(\operatorname{CoalgMor}(R, b)(X, d))^{2} \\
(X, d) \stackrel{\left(\rho_{0}, c_{0}\right)}{\leftrightarrows}(R, b) \xrightarrow{\left(\rho_{1}, c_{1}\right)}(X, d)
\end{gathered}
$$

We can view $\left((R, b),\left(\rho_{0}, c_{0}\right),\left(\rho_{1}, c_{1}\right)\right):$ SpanBisim X as a relation on X :

$$
x_{0} \sim x_{1}:=\sum_{r: R}\left(\left(\rho_{0} r=x_{0}\right) \times\left(\rho_{1} r=x_{1}\right)\right) .
$$

Propositional equality is a bisimulation:

$$
={ }_{(X, d)}:=((X, d),(\mathrm{id}, \mathrm{ref}),(\mathrm{id}, \mathrm{ref})) .
$$

Span Bisimulation Morphism

For (X, d) : Coalg and $\sim, \approx: \operatorname{SpanBisim}(X, d)$ we define:

$$
\begin{gathered}
\text { SpanBisimMor } \sim \approx:=\sum_{(f, c): \text { CoalgMor }(R, b)(S, c)} \text { (the diagram commutes) }
\end{gathered}
$$

In particular this is an inclusion of the relations.

Span Bisimilarity M-type

For (M, des) : Coalg we define:

Implications

We have the following functions:

$$
\begin{aligned}
& \operatorname{IsFinM}(M, \operatorname{des}) \rightleftarrows \operatorname{IsSpanBisimM}(M, \text { des }) \\
& \quad \text { funext } \uparrow \downarrow \\
& \operatorname{IsCohM}(M, \text { des }) \longrightarrow \operatorname{IsLiftingBisimM}(M, \text { des })
\end{aligned}
$$

- The arrow marked with 'funext' uses function extensionality.
- IsLiftingBisimM would have to add coherences to be equivalent.
- These results have largely been formalised in Agda.

